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Abstract: The threats of malware and cyber-attacks are rapidly increasing, and network protection and cyber 

security are the major issues in now a day for online communities. But the machine learning opens the new doors of 

huge opportunities in cybersecurity, because traditional approaches of network protection need human intervention 

to find and remove the vulnerability.  Implementation of machine learning in cyber security made the stronger 

malware detection process, more active, accessible, and efficient than previous methods. The cybersecurity field 

facing several challenges in machine learning techniques which are need to be improved effectively. This paper 

includes various machine learning approaches which proven effective implementation to remove and detect most of 

the cyber-attacks. These approaches and models are most effective to develop reliable and secure systems.   
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1. Introduction  
Due to the rapid and substantial rise in the significance of information technology over the past few decades, a 

multitude of security incidents have experienced a remarkable surge. These incidents encompass a range of 

unauthorized activities, including but not limited to illegal accessibility, service denial, worm infiltrations, data 

leakage, and re-analysis or hacking scams. The frequency of these incidents has escalated exponentially throughout 

the previous decade. 

To illustrate this trend, in the year 2010, the security field documented a tally of under 50 million distinct executable 

malware files. By the time 2012 arrived, this documented figure had surged twofold to an approximate 100 million. 

Notably, as per statistics provided by AV-TEST, the security sector encountered a staggering 900 million executable 

instances in the year 2019, with this number continuing to expand. 

The repercussions of e-crime and cyber war are profound, resulting in substantial monetary repercussions for both 

organizations and individuals. Therefore, the cost of an average data breach in the United States is projected at $3.9 

million, while the global estimate reaches 8.19 million. Moreover, the worldwide economy bears the weight of a 

$400 billion annual expense due to cybercrime. 

Projections from the security community indicate that this number is poised to experience an almost fourfold 

increase over the next five years, setting new records. Consequently, businesses are compelled to formulate and 

execute a comprehensive cybersecurity strategy to mitigate further financial setbacks. Recent socio-economic 

analyses underscore the imperative for governments and individuals to have secure access to data, applications, and 

tools, as this directly impacts national security. 

Cybersecurity is exercise of protecting computer and networks from unwanted use, reading, release, disturbance, 

alteration, or damage [15…]. It is a broad term that encompasses a several security issues, such as: 

 Physical safety: This includes measures to protect computer systems and networks from physical actions, 

including unwanted use to data centers or server rooms. 

 Network security: This includes measures to to secure data from unwanted use, such as firewalls and 

intrusion detection systems. 
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 Information security: This includes measures to secure data from unwanted use, access, leakage, or 

alteration, such as encryption and access control lists. 

 Application security: This includes measures to protect applications from security vulnerabilities, such as 

code reviews and penetration testing. 

Conventional cybersecurity solutions include elements like utility software of antivirus and firewall, and systems to 

detect intrusion, integrated into network and computer security setups. The ongoing evolution of data science, 

particularly machine learning—an integral facet of "artificial intelligence"—holds significant potential in uncovering 

concealed patterns within data. This transformative role is revolutionary and new scientific model of data science, 

notably influencing the landscape of cybersecurity[2,3…]. Addressed in [4..], the progression of technologies 

associated with launching cyber threats has empowered attackers, rendering them more proficient, which in turn 

has led to a surge in interconnected technologies. 

In 2015, both the fields of Cyber Security and Machine Learning exhibited popularity values below 30. However, 

these values are projected to surpass 70 by the year 2023, showcasing a significant surge in popularity, more than 

doubling within this time span. This study is primarily centered around the intersection of machine learning and 

cybersecurity. This intersection is rooted in their shared focus on decision making systems, safety,  and different  

methods to process data, all aimed at real-life application. 

 

The primary focus of this research revolves around the utilization of machine learning algorithms on security data to 

assess cyber risks and optimize cybersecurity procedures. This endeavor holds relevance not only for academics but 

also for industrial researchers who are keen on exploring and crafting data-driven intelligent models for 

cybersecurity using machine learning methodologies. 

 

Machine learning represents better option from previous methods to solve problems, such as user verification, 

accessibility monitoring, antivirus, and cryptographic models. It is not sure the these traditional approaches 

adequately cater to the dynamic cybersecurity requirements of the present era[16–18]. A significant issue arises 

when it comes to manually addressing these solutions in scenarios necessitating ad hoc data management [7…]. As 

the landscape of cybersecurity continues to witness a growth of various incidents, conventional methods are proving 

inadequate in managing the associated risks. This shortfall has led to the emergence of novel and intricate attacks 

that propagate rapidly through networks. Consequently, researchers are resorting to different data analysis and 

models for extracting the information to construct Cyber Security frameworks, which are discussed in next section. 

These models hinge on effectively identifying security insights and staying abreast of the latest security trends, which 

can be of more pertinence. 

 

The research underscores the imperative of crafting adaptable and efficient security systems capable of responding 

to and mitigating attacks while dynamically updating security protocols to counteract them intelligently and 

promptly. Achieving this demands the analysis of a substantial volume of pertinent cybersecurity data gathered from 

varied sources like network and system resources. Furthermore, these techniques ought to be applied in a manner 

which improve less human efforts and made them fully automatic. 

2. ML Techniques used for Cyber security 
Mostly, Machine learning (ML) referred as an aspect of "artificial intelligence," intricately intertwined with statics 

and the concept of data mining. Its primary focus revolves around empowering systems to assimilate insights from 

old data[67,68]. Consequently, these models often encompass an assemblage of regulations, procedures, and 

intricate functions or expressions. Above attributes may be harnessed to unearth stimulating forms within data, 

identify sequences, or forecast behaviors[10…]. This positions ML as a potentially valuable asset within the realm of 

cybersecurity. In Figure 4, there is an overview of the frequently employed machine learning concepts.  
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2.1 Shallow Model 
The realm of machine learning algorithms, specifically shallow models, can be categorized into two main types: 

supervised learning and unsupervised learning. In supervised learning scenarios, models generally lack a dependent 

variable and primarily utilize inherent patterns of data. Various algorithms, discussed in literatures [70-71], can be 

employed for this purpose. 

In supervised learning, models are typically equipped with class labels to authenticate predictions. For instance, 

Naïve Bayes employs a probability distribution to determine the class label for each data. Based on the training 

dataset, few decision trees constructed. When it comes to prediction, this tree structure can effectively sort 

unknown records. Concept of random Forest [13…] adopts a same strategy, but in place of building a single tree, it 

constructs a set of trees and employs a selection mechanism for record classification. Owing to the collaborative 

decision-making process, random forests often achieve heightened accuracy of classification. 

 

A SVM (support vector machine) [14…] operates a decision line derived by dataset provided, akin to binary 

classification. Additionally, SVMs possess the capability to transform data through the application of the kernel trick, 

enabling them to classify non-linear datasets proficiently. 

 

2.2 Deep Learning Model 
Deep learning models offer a distinctive approach to classifying and clustering algorithms, diverging significantly 

from traditional machine learning models. These models are often referred to as "black box models" because they 

lack a fixed algorithm for prediction. Instead, they scrutinize data, discern patterns, and leverage these patterns for 

predictive purposes. 

Deep learning models employ artificial neural networks constructed from numerous perceptrons. During the initial 

phases of model training, these perceptions establish connections in a randomized manner. As they analyze the data 

and undergo training over a specified period, these perceptions acquire values, commonly known as weights, that 

are better suited for classifying the provided dataset. 

There exist various iterations of deep learning models tailored to specific tasks. Convolutional neural networks, for 

instance, are employed in the classification of image data and have even found application in categorizing 

cybersecurity datasets by converting the data into an image-like format. On the other hand, Recurrent Neural 

Networks (RNNs) are apt for classifying data with a temporal dimension. Enhanced versions of RNNs, including LSTM 

(long short-term memory) and Bi-LSTM, have further improved their performance. 

Deep learning's unsupervised learning encompasses both autoencoders and generative adversarial networks. 

Autoencoders primarily employ dimensionality reduction, transforming information into a compressed 

representation before subsequent processing. This technique facilitates meaningful information compression, 

consequently enhancing predictive accuracy. 
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2.3 Reinforcement learning 
Reinforcement learning offers a distinct approach to model training, enabling the differentiation between long-term 

and short-term goals. In this paradigm, agents engage with their environment, receiving rewards or penalties based 

on their actions. These variable rewards guide the model's improvement over time. One prominent example of this 

is Deep Q Networks (DQN) [15…], where deep learning is used to establish the mapping between states and actions, 

reducing the need for a large Q-learning table (TQL). 

A derivative of DQN, known as QR-DQN [16…], employs quantile regression to model potential distributions instead 

of providing a mean distribution. This distinction can be likened to the difference between decision trees and 

random forests, as discussed earlier. In this section, we delve into various methodologies applicable to machine 

learning and their relevance to cybersecurity. 

Conversely, traditional machine learning models are often referred to as "shallow models" in the context of intrusion 

detection systems (IDS). Many of these techniques have undergone extensive research and are well-established. 

They primarily concentrate on functions beyond intrusion detection, encompassing activities such as tagging, 

efficient attack detection, and the optimal management of available and processed data. 

 

3. Challenges   
Numerous research challenges and hindrances exist within the realm of applying machine learning to cybersecurity. 

These issues must be tackled to derive valuable insights from pertinent data, enabling informed and data-driven 

cybersecurity choices. Machine learning methods demand substantial computing power and extensive datasets for 

model training. While employing multiple GPUs can help, this approach is neither energy-efficient nor economical. 

Furthermore, it's important to note that machine learning techniques are not inherently tailored for cybercrime 

detection. 

3.1 Current Challenges 
Traditional machine learning techniques have historically not prioritized cybersecurity. There's a pressing need for 

robust and potent machine learning methodologies expressly crafted to handle security threats and adversarial 

inputs. It's vital to recognize that a single machine learning model cannot proficiently detect diverse security attacks. 

Instead, a tailored machine learning model should be designed for each specific cyberattack type. 

 

Another formidable challenge lies in early-stage attack prevention. Machine learning techniques should possess the 

capability to swiftly identify real-time and zero-day attacks within a brief timeframe. 

 

Machine learning models have demonstrated their utility in decision-making contexts, such as terrorism detection or 

medical diagnoses. However, in these instances, blind reliance on predictions could lead to catastrophic 

consequences. Hence, when employing machine learning techniques in situations of critical importance, such as self-

driving cars, cybersecurity, or surgical robotics, it becomes imperative to prioritize high-level correctness guarantees 

over mere speed and accuracy [17-18…]. 

Trusted machine learning encompasses the secure application of machine learning techniques in the realm of 

cyberspace. The reliability of a classifier can be assessed through two avenues: (1) trusting the prediction, which 

involves evaluating whether users have confidence in a specific prediction model to guide a particular action, and (2) 

trusting the model itself, which pertains to whether users will have faith in the model when deployed as a tool in a 

rational manner. 

In a study referenced as [19…], researchers delved into the dataset shift problem, wherein a model was trained and 

tested using dissimilar datasets. They also proposed strategies to mitigate dataset drift, such as eliminating leaked 

data or modifying the training dataset. These methods assist in determining the necessary steps to transform an 

untrusted model into a trusted one. It is worth noting that classical linear or shallow learning approaches tend to 

offer greater reliability, albeit at the cost of slower or less precise performance. 
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3.2 Future Challenges 

Deep learning remains intricate and opaque, despite the ongoing advancements in theory. The advent of mobile 

phones and the Global Positioning System has opened up new possibilities for forensic science and epidemic control 

to ascertain the whereabouts of specific moving objects. However, maintaining the trustworthiness of a particular 

object's location is a formidable task due to potential errors or data distortions inherent in mobile devices. Chenyun 

[20…] introduced an approach to evaluate the similarity of location-related information gathered from multiple 

sources about a specific object. The reliability of position data derived from the trajectories of moving objects is 

inherently uncertain, primarily due to the objects' positional changes and network delays [21…]. In [22…], the 

authors proposed the use of a trust ontology approach to facilitate trustful interactions between service providers 

and consumers within an online web system. 

Credibility also plays a vital role in natural language processing (NLP), especially in text classification for critical 

missions where message interpretation holds significant importance. Incorporating credibility considerations into 

text analysis, both in practical and semantic contexts, is essential to achieve the most accurate credibility detection 

results [23…]. Others have put forth a metric model for assessing software trustworthiness [24…]. Machine learning 

techniques find applications in the energy sector, where energy-efficient strategies have been suggested to curtail 

power consumption in data centers and businesses [25…]. This involves dynamically shutting down idle machines to 

reduce overall energy usage. Ensuring the reliability of the prediction model for deciding which machines to power 

down is of paramount importance. 

In the realm of cybersecurity, the sensitivity of alarm detection is a critical concern, as it can lead to a higher false 

alarm rate, commonly referred to as alarm fatigue. A heightened false alarm rate has adverse implications for 

security personnel and can result in missed critical alarms or delayed responses. Addressing this issue is a challenging 

research endeavor in the field of cybersecurity [26…], [27…]. 

4. Major Challenge and Issues  

4.1. Availability of Dataset  
In the field of cybersecurity, much like in machine learning, the availability of source datasets is of paramount 

importance. However, a significant challenge arises from the fact that many publicly accessible datasets tend to be 

outdated and may not offer sufficient insights into the uncharted behavior patterns of diverse cyberattacks. Even 

though current data can be transformed into knowledge through a series of processing steps, there remains a gap in 

our comprehension of the characteristics of recent attacks and their recurring patterns. Consequently, the 

application of additional processing or machine learning techniques may yield suboptimal accuracy in the final 

decision-making process. 

 

A fundamental hurdle in leveraging machine learning approaches for cybersecurity lies in the scarcity of up-to-date, 

domain-specific datasets, especially for tasks such as attack prediction or intrusion detection. Much of the 

information pertaining to data and cyberattacks tends to be repetitive, and machine learning models tend to 

perform more effectively when trained on larger datasets, which is often not the case with currently available 

datasets. Conversely, publicly accessible datasets are typically subject to strict anonymization and are beset by 

various limitations, primarily the fact that they do not accurately represent real-world and recent cyberattacks. 

Given these challenges, it remains challenging to distinguish between simulated benchmark datasets and the latest, 

real-world data. 

4.2. Standard Dataset 
Cybersecurity datasets often exhibit several challenges, including imbalances, noise, incompleteness, irrelevance, 

and inconsistencies in the instances of security breaches. These dataset issues have a detrimental impact on the 

quality of the learning process and the performance of machine learning-based models, as highlighted in references 

[28,29…]. To establish a data-driven cybersecurity solution, it is imperative to resolve these data-related problems 

before applying machine learning techniques. 

One crucial step in this process is the establishment of benchmark and standard datasets containing extensive data 

for both training and testing, ensuring a balanced representation of attack categories. Data for security systems is 

sourced from various channels, encompassing social media and conventional sources like web and database access. 
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An essential aspect is comprehending these cybersecurity data challenges and addressing them effectively through 

existing or novel algorithms to accomplish tasks such as malware and intrusion detection, among others. 

Feature engineering techniques, as mentioned in reference [30…], play a pivotal role in resolving these issues. These 

techniques involve the analysis and removal of redundant features, thereby reducing data dimensionality and 

complexity. Handling data imbalance is another critical aspect, which can be approached through methods like 

hybrid models, as reported in [31…], or through the generation of synthetic data, as mentioned in [162,163]. 

Additionally, addressing concerns related to data leakage is essential. 

Furthermore, the sheer volume and diversity of data sources collected from various origins pose a significant 

challenge for machine learning models in the field of cybersecurity. It's worth noting that many datasets 

representing recent attacks are not publicly available due to privacy and security concerns. 

 

4.3 Standard Metrics  
In the work by the authors in reference [32………], they introduced several evaluation metrics for assessing the 

classifier's performance. Nevertheless, it's noteworthy that many researchers have employed distinct parameters to 

appraise classification models, often overlooking the complementary aspects, even when working with the same 

dataset. There is a pressing necessity to establish a consensus on a standardized set of metrics for comparing 

models, which would pave the way for more effective enhancements in this field. 

4.4. Hybrid Learning  
Signature-based intrusion detection methods stand out as the most prevalent and firmly established approaches 

within the cybersecurity landscape [34,35…]. Nevertheless, these algorithms may falter in detecting novel attacks or 

incidents due to missing features, significant feature constraints, or limited profiling capabilities. To address these 

limitations, anomaly-based techniques, or hybrid approaches that merge both anomaly-based and signature-based 

detection methods, can be employed effectively. 

 

For a more focused understanding within specific problem domains like intrusion detection, malware analysis, or 

phishing detection, harnessing a hybrid learning approach that combines diverse machine learning techniques 

proves invaluable. By amalgamating deep learning, statistical analysis, and traditional machine learning 

methodologies, one can make informed decisions when devising cybersecurity solutions. 

4.5 Detection and Time Complexity of Techniques  
The existing literature has paid limited attention to real-time attack environments, which is a noteworthy gap. When 

addressing such environments, it becomes imperative to evaluate both the detection rate of attacks and the 

algorithm's time complexity. Given that cybercriminals continually devise new attack strategies to exploit network 

vulnerabilities, the efficacy of attack detection holds great significance. In cases where the system produces false 

positives, security analysts are compelled to invest valuable time investigating non-malicious activities, which can 

undermine their confidence in the system if such occurrences become frequent. It's also crucial to take into account 

the computational complexity of various machine learning models, as demonstrated in Table 6. Furthermore, future 

research might explore enhancing detection speed and reducing computational costs by leveraging advanced 

hardware in a distributed approach. 

4.6. Feature Engineering  
The efficacy and performance of machine learning-based security models have come under scrutiny due to the 

immense volume of network traffic data and the multitude of smaller operational intricacies. To address the high 

dimensionality of this data, several techniques, such as principal component analysis (PCA), singular value 

decomposition (SVD), and linear discriminant analysis (LDA), have been employed. Establishing contextual 

connections between suspicious activities and low-level information within datasets can prove beneficial. These 

contextual data can be subjected to processing through an ontology or taxonomy to facilitate further investigation. 

Consequently, another challenging aspect in the domain of machine learning for cybersecurity pertains to the 

efficient selection of optimal features or the extraction of significant characteristics. This process should take into 

account both machine-readable features and contextual attributes to devise effective cybersecurity solutions. 

4.7. Leakage  
Data leakage, often referred to as "leakage," occurs when the training dataset includes relevant data that is not 

readily available or significantly diverges when models are utilized for predictions [37…]. This typically leads to overly 

optimistic predictions during the model development phase, followed by disappointing results when the prediction 

model is applied and tested on new data. In a notable research work [38…], this problem is termed "leaks from the 
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future," recognized as one of the "top 10 data mining mistakes," and is addressed through the recommendation of 

employing exploratory data analysis (EDA) to identify and eliminate potential sources of leakage. 

EDA serves the purpose of enhancing dataset integrity, ultimately improving the accuracy of machine learning 

models when making predictions on unfamiliar data. Recent research [39…] emphasizes the detection and 

exploitation of leaks as a crucial factor in achieving success in data mining competitions, highlighting that it can also 

be a determinant of failure in data mining applications. Additionally, another study [40…] discusses the inclusion of 

indicative features that predict the target variable, often introduced at a later stage in the data collection process. 

To mitigate the risk of leakage, researchers have proposed a two-stage approach [41…], which involves tagging each 

observation with a legitimacy marker during data collection and subsequently ensuring a clear separation between 

the learning and prediction phases. This approach yielded significant benefits, achieving a maximum accuracy of 

91.2% with Naive Bayes, 87.5% using k-NN, and 94.2% with a centroid-based approach across different categories. In 

cases where machine learning scientists lack control over the data collection process, EDA remains a valuable 

technique for detecting and addressing potential leaks [42…], holding promise for future research endeavors. 

4.8. Homomorphic Encryption  
Homomorphic encryption represents a significant milestone in the field of cryptography, offering the capability to 

allow an untrusted third party to process data without revealing any sensitive information, thereby granting access 

to confidential data securely. In this encryption paradigm, neither the end-user nor an unauthorized remote server 

gains access to the decryption key, ensuring that the data remains within the designated domain. Its versatility 

extends across various domains, encompassing applications in cloud computing, financial transactions, and defense 

against potential threats from quantum computing technologies[43…]. 

 

Homomorphic encryption can be applied in two distinct ways: partial and full encryption. Fully Homomorphic 

Encryption (FHE) plays a pivotal role in enabling machine learning processes without compromising data privacy. 

Machine learning algorithms, whether deep learning or shallow, heavily rely on domain-specific data, often 

challenging to share publicly. FHE introduces a novel approach to delegate the sharing of sensitive data without 

exposing the actual meaningful data. However, it is essential to note that FHE's primary limitation lies in its 

restriction to integer-based operations. Therefore, ongoing research is focused on developing matrix-based schemes 

for FHE, with recent work demonstrating the efficacy of employing lowest degree polynomial approximation 

functions, such as Chebyshev, in conjunction with continuous functions like the sigmoid function. This innovation has 

paved the way for a new encryption method over FHE, particularly suitable for homogeneous networks[44-45…]. 

Federated learning, in tandem with FHE, has revolutionized the learning processes, particularly in scenarios involving 

extensive image data with sample expansions. This synergy has expanded the scope of FHE applications across 

various domains, including the highly confidential realm of medical and health information. Access to health data 

through FHE has opened up numerous possibilities for leveraging machine learning in the context of medical images 

and data from the Internet of Medical Things (IoMT). Notably, the integration of FHE with chaotic mapping, though 

successful in ensuring data transmission, raised concerns about computational privacy. Subsequent advancements in 

2021 combined FHE with secret sharing and edge computing, enabling distributed mathematical operations without 

data leakage[46-47…]. 

 

Furthermore, the emergence of CryptoRNN, a recurrent neural network, has introduced a novel approach focusing 

on blockchain technology's privacy protection. Within cloud environments, the integration of FHE has become 

increasingly prevalent due to its adaptability in accessing domain data and harnessing substantial computing power. 

Machine learning as a service platform (MLaaS) further augments the utility of FHE in safeguarding confidential data 

by offering a wide array of machine learning algorithms[48-49…]. 

 

Exploring the application of homomorphic encryption in wireless sensor networks (WSNs), researchers have 

assessed its performance using the NS-2 network simulation tool. In such environments, where conditions remain 

consistent for each experimental agent, FHE outperformed alternative decryption methods like DAA, which decrypt 

data hop-by-hop, achieving a time complexity of O(n). Overall, the incorporation of homomorphic encryption serves 

to enhance global data flow, expand practical machine learning applications, and bolster cybersecurity efforts on a 

larger scale [51-52…]. 
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4.9. Quantum Computing  

In the early stages of quantum computing development, it became apparent that these emerging systems held the 

potential to compromise the security provided by asymmetric encryption techniques [53…]. Asymmetric key 

encryption relies on the generation of public and private keys through the factorization of two exceedingly large 

prime numbers. While factoring small primes is feasible, decrypting keys of significant size could take thousands of 

years, ensuring the security of our data. However, Shore's algorithm [54…], which offers an alternative for 

factorization, is also notably slow. Quantum computing, leveraging its superposition principle, can rapidly derive 

factors in a fraction of the time it would take for classical binary computing systems. Consequently, widely-used 

encryption algorithms like RSA, DES, elliptic curve algorithms such as ECDSA, and digital signature algorithms are 

rendered insecure by the speed of quantum computing [55…]. For instance, researchers have pointed out that 

cracking a 56-bit DES encryption using Grover's algorithm on a quantum computer would require just 185 searches 

to identify the key [56…]. 

On the other hand, symmetric key algorithms like AES remain resistant to quantum computing attacks. Scientists are 

exploring various avenues, including both quantum and mathematical techniques, to overcome these limitations. 

One notable example is the BB84 protocol, a quantum key distribution method [57…]. Additionally, mathematical 

approaches like lattice-based cryptography are under investigation [58…]. These efforts aim to enhance encryption 

methods that can withstand quantum computing advancements. 

While quantum computing poses a threat to asymmetric encryption, it also offers opportunities for accelerating 

machine learning when employed as subroutines [59…]. This potential enhancement can significantly reduce 

prediction times, especially for algorithms such as Support Vector Machines (SVM), which may require extensive 

time for implementing kernel transformations to derive hyperplanes. Quantum computing can also be integrated 

into deep learning configurations, albeit with some challenges due to the linear dynamics inherent in quantum 

neural networks [60…]. 

4.10 Concept of Adversarial Inputs to Models 

The concept of adversarial inputs to machine learning models poses several challenges, as discussed by the authors 

in [61…]. In military applications, the need for swift decision-making is paramount. Adversaries can manipulate 

messages by introducing hostile text sequences, potentially altering the message's entire meaning and leading to 

disastrous consequences [62…]. Training machine learning models in an adversarial environment is a crucial strategy 

for enhancing their resilience to such hostile inputs. 

One proposed defense mechanism in this regard is DeepCloak, designed to identify and eliminate unnecessary 

features within deep neural network (DNN) models. DeepCloak's function is to curtail an attacker's ability to 

generate adversarial samples, thereby bolstering the model's robustness [63…]. However, it's worth noting that the 

assumption that test data comes from the same distribution as the training data is often violated. For instance, 

differences in the cameras used to capture images during training and testing can adversely affect model 

performance. 

The work of Tony et al. in [64-65…] and [66…] sheds light on various adversarial attacks that can deceive the learning 

process of machine learning models. Additionally, Ibitoye et al. in [67…] have proposed a novel model for identifying 

the risk of adversarial attacks in network security, accompanied by an evaluation of different adversarial attacks on 

machine learning models used in network security scenarios.  

In the realm of cybersecurity, there is a pressing need for deep learning models that exhibit resilience to noise and 

adversarial examples, although achieving this remains a challenging endeavor. 

4.11 Adversarial Attacks and Defences  
On the contrary, when a cyber attacker manipulates the attack pattern to influence the data as it is being distributed 

in order to deceive the trained model, this type of attack is referred to as an evasion attack [68…]. There exists a 

spectrum of adversarial attacks, including but not limited to the Fast Gradient Signal Method (FGSM), Multistage Bit 

Coordinate Ascent (BCAk), Multistage Bit Gradient Ascent (BGAk), Generative Adversarial Networks (GAN), and the 

Carlini & Wagner Attack (C&W) [68…]. 

 

In response to these adversarial threats, various defensive strategies have been proposed in the research literature. 

These strategies aim to thwart adversarial attacks and maintain the integrity of machine learning models. Among 

these strategies are adversarial training [69…], defense distillation [70…], compression specificity [71…], and the 

Magnet approach [72…]. 
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Adversarial training involves the incorporation of adversarial examples during the model training process. While this 

approach is relatively straightforward to implement, it necessitates some level of training behind the model. The 

benefit is that attacks encountered during testing are as valuable as those experienced during training. 

 

On the other hand, defense distillation requires retraining the model but is highly efficient for most datasets. It 

involves the distillation of neural networks to train new models with improved resilience to adversarial attacks. 

 

Feature compression has proven effective in combatting various adversarial attacks, especially in image databases 

such as ImageNet and MNIST. This method involves compressing the data using various compression techniques, 

typically pixel-based methods. If the predictions of the original and compressed samples exhibit significant 

disparities, the compressed sample is flagged as a counterexample. Notably, this approach does not necessitate 

retraining the model but instead employs an autoencoder to detect counter-patterns [71…]. 

4.12 Growing Attacks   
As the field of cybersecurity continues to evolve, cyberattacks are also evolving at a rapid pace. Leveraging machine 

learning (ML) to counter these emerging threats poses two distinct challenges. Firstly, ML models are employed to 

detect activities that have not been previously encountered [73…]. Secondly, new cyberattacks frequently differ in 

their technical characteristics from older ones. Typically, ML models are trained using historical features within the 

dataset, but new attacks may exhibit different sets of features. Modern cyberattacks have the ability to evade 

classifiers, potentially leading to false alarms or reduced detection rates. 

4.13 Confidentiality and Protection 
As per concerns of security and user privacy, have increased with the collection of data from structured and 

unstructured sources. This leads to Big-data and its protection issues for safety [74…]. Safe data protection against 

hostile attacks and tampering by unauthorized users is essential. Normal users should also have permission to access 

the data. 

5. Other Unique Challenges 

5.1 Much higher requirements for accuracy. 
if you're processing an image and the system mistakes a dog for a cat, it might be annoying, but it probably won't be 

life-or-death. If a machine learning system mistakes a fraudulent data packet for a legitimate one, leading to an 

attack on a hospital and its equipment, the impact of miscategorization can be severe. 

Organizations see large volumes of data packets pass through firewalls every day. If Machine Learning model 

miscategorized only 0.1% data, then we can mistakenly block a huge amount of normal traffic that would have a 

serious impact on the business. Understandably, in the early days of machine learning, some organizations were 

concerned that the models would not be as accurate as human security researchers. It takes time and also requires a 

huge amount of data to actually train a machine learning model to the same level of accuracy as a truly skilled 

human. However, people do not scale and are among the rarest resources in IT today. We rely on ML to effectively 

augment cybersecurity solutions. ML can also help us detect unknown attacks that are hard for humans to detect 

because ML can create baseline behaviors and detect any abnormalities that deviate from them. 

5.2 Access to large amounts of training data, especially labeled data. 
Machine learning requires large amounts of data to make models and predictions more accurate. Malware sample 

acquisition is much more difficult than image processing and NLP data acquisition. There is not enough data on 

attacks and much data on security risks is sensitive and unavailable for privacy reasons. 

5.3 Dynamic Nature 
Basic truth. Unlike images, the ground truth in cybersecurity may not always be available or fixed. The cybersecurity 

environment is dynamic and constantly changing. No malware database can claim to cover all the malware in the 

world, and more malware is being generated every moment. What is the ground truth that we should compare 

ourselves to in order to judge our accuracy? 

6. Conclusions 
Cybersecurity stands as a global concern, prompting ongoing enhancements in security measures to detect and 

combat cyber threats. The conventional security systems utilized in the past have become inadequate, lacking the 

efficacy to identify concealed and polymorphic attacks. Machine learning techniques have emerged as a pivotal 

component in various cybersecurity applications. Our examination reveals a substantial surge in interest surrounding 
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the intersection of machine learning and cybersecurity within both academic and industrial domains, particularly in 

the past decade. This surge has resulted in a marked increase in publications. In this paper, we endeavor to bridge 

the gap between machine learning techniques and the myriad threats facing computer networks and mobile 

communications by conducting a comprehensive study that explores the interplay between these two domains. 

 

Our study encompasses a literature review of machine learning techniques for intrusion detection, spam detection, 

and malware detection in computer networks and mobile devices over the preceding decade. We offer a concise 

overview of the application of machine learning models in the realm of cybersecurity, with a specific focus on 

developments within the last decade. Each type of cyber threat presents unique characteristics that challenge even 

the most advanced machine learning models when addressing such attacks. Consequently, prescribing a singular 

recommendation for all attacks based on a single model proves unfeasible. Multiple criteria, such as detection 

speed, time complexity, classification time for identifying novel and zero-day attacks, and model accuracy, should be 

weighed when selecting a particular model for cyber attack detection. 

 

In our exploration, we elucidate the fundamentals of cybersecurity, including the categorization of cyber attacks on 

both mobile devices and computer networks. Recognizing the pivotal role of machine learning, we provide 

introductory explanations of the basics, types, and key techniques of machine learning to facilitate comprehension 

for newcomers to the field. To our knowledge, there exists a scarcity of literature that delves into the application of 

machine learning techniques within the domain of cybersecurity concerning mobile devices and computer networks. 

 

We present a visual overview of cyber attacks and the spectrum of machine learning techniques available for 

countering these cybercrimes. Additionally, we evaluate select popular machine learning tools and propose 

evaluation criteria for assessing the performance of any classifier. Datasets hold paramount importance for training 

and testing machine learning models, and we furnish descriptions of the most frequently utilized security databases. 

It is important to note that no single, comprehensive database exists for each threat domain. 

 

Machine learning techniques were not originally conceived with cybersecurity in mind, making them susceptible to 

fuzziness, which can lead to misleading inputs. Reliable machine learning represents a facet of applying machine 

learning techniques in cyberspace that offers a degree of assurance regarding model speed and accuracy. We also 

provide a concise summary of key challenges in the application of machine learning techniques in the context of 

cybersecurity and supply an extensive bibliography to guide further exploration in this field. These challenges 

warrant substantial attention and exploration in future research endeavors. 

6. References 
[1.]  O’Connell, M.E. Cyber security without cyber war. J. Confl. Secure. Law 2012, 17,187–209. [CrossRef]  

[2.]  Tolle, K.M.; Tansley, D.S.W.; Hey, A.J. The fourth paradigm: Data-intensive scientific discovery [point of view]. 

Proc. IEEE 2011, 99, 1334–1337. [CrossRef] 

[3.] Benioff, M. Data, data everywhere: A special report on managing information (pp. 21–55). The Economist, 27 

February 2010.  

[4.] Cost of Cyber Attacks vs. Cost of Cybersecurity in 2021|Sumo Logic. Available online: 

https://www.sumologic.com/blog/costof-cyber-attacks-vs-cost-of-cyber-security-in-2021/ (accessed on 10 May 

2022).  

[5.] Anwar, S.; Mohamad Zain, J.; Zolkipli, M.F.; Inayat, Z.; Khan, S.; Anthony, B.; Chang, V. From intrusion detection 

to an intrusion response system: fundamentals, requirements, and future directions. Algorithms 2017, 10, 39. 

[CrossRef]  

[6.] Tapiador, J.E.; Orfila, A.; Ribagorda, A.; Ramos, B. Key-recovery attacks on KIDS, a keyed anomaly detection 

system. IEEE Trans.  

[7.] Saxe, J.; Sanders, H. Malware Data Science: Attack Detection and Attribution; No Starch Press: San Francisco, CA, 

USA, 2018..  

[8.] Han, J.; Kamber, M.; Pei, J. Data mining concepts and techniques third edition. Morgan Kaufmann Ser. Data 

Manag. Syst. 2011, 5, 83–124.  

[9.] Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Practical machine learning tools and techniques. Morgan Kaufmann 

2005, 2, 578.  

[10.] Dua, S.; Du, X. Data Mining and Machine Learning in Cybersecurity; CRC Press: Boca Raton, FL, USA, 2016.  

http://www.jetir.org/


© 2023 JETIR October 2023, Volume 10, Issue 10                                    www.jetir.org (ISSN-2349-5162) 

JETIR2310680 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org h649 
 

[11.] Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial 

databases with noise. In Proceedings of the KDD-94, Oregon, Portland, 2–4 August 1996; Volume 96, pp. 226–

231.  

[12.] Inokuchi, A.; Washio, T.; Motoda, H. An apriori-based algorithm for mining frequent substructures from 

graph data. In Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery, 

Lyon, France, 13–16 September 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 13–23.  

[13.] Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]  

[14.] Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]  

[15.] Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with 

deep reinforcement learning. arXiv 2013, arXiv:1312.5602.  

[16.] Dabney, W.; Rowland, M.; Bellemare, M.; Munos, R. Distributional reinforcement learning with quantile 

regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 

2018; Volume 32.  

[17.] M. T. Ribeiro, S. Singh, and C. Guestrin, ‘‘‘Why should I trustyou?’ Explaining the predictions of any 

classifier,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2016,pp. 1135–1144.  

[18.] S. Ghosh, P. Lincoln, A. Tiwari, and X. Zhu, ‘‘Trusted machine learning:Model repair and data repair for 

probabilistic models,’’ in Proc. Workshops 31st AAAI Conf. Artif. Intell., 2017.  

[19.] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, andN. D. Lawrence, Dataset Shift in Machine Learning. 

Cambridge, MA, USA: MIT Press, 2009.  

[20.] C. Dai, H.-S. Lim, E. Bertino, and Y.-S. Moon, ‘‘Assessing the trust-worthiness of location data based on 

provenance,’’ in Proc. 17th ACM SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst. (GIS), 2009,pp. 276–285  

[21.] G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain, ‘‘Managing Uncertainty in moving objects 

databases,’’ ACM Trans. Database Syst., vol. 29, no. 3, pp. 463–507, Sep. 2004.  

[22.] M. Zhu and Z. Jin, ‘‘A trust measurement mechanism for service agents,’’in Proc. IEEE/WIC/ACM Int. Joint 

Conf. Web Intell. Intell. Agent Technol., Sep. 2009, pp. 375–382.  

[23.] Q. Su, C.-R. Huang, and H. K.-Y. Chen, ‘‘Evidentiality for text trustwor-thiness detection,’’ in Proc. Workshop 

NLP Linguistics, Finding Common Ground, Assoc. Compute. Linguistics, 2010, pp. 10–17.  

[24.] H. Tao and Y. Chen, ‘‘A metric model for trustworthiness of softwares,’’ inProc. IEEE/WIC/ACM Int. Joint 

Conf. Web Intell. Intell. Agent Technol., Sep. 2009, pp. 69–72.  

[25.] J. L. Barrel, Ì. Goiri, R. Nou, F. Julià, J. Guitart, R. Gavaldà, and J. Torres,‘‘Towards energy-aware scheduling in 

data centers using machine learning,’’ in Proc. 1st Int. Conf. Energy-Efficient Comput. Netw. (E-Energy), 2010, pp. 

215–224.  

[26.] X. Wang, Y. Gao, J. Lin, H. Rangwala, and R. Mittu, ‘‘A machine learning approach to false alarm detection for 

critical arrhythmia alarms,’’ in Proc. IEEE 14th Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2015, pp. 202–207.  

[27.] L. M. Eerikainen, J. Vanschoren, M. J. Rooijakkers, R. Vullings, andR. M. Aarts, ‘‘Decreasing the false alarm 

rate of arrhythmias in intensivecare using a machine learning approach,’’ in Proc. Comput. Cardiol. Conf.(CinC), 

Sep. 2015, pp. 293–296.  

[28.]  Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 

237–285. [CrossRef]  

[29.] Sarker, I.H.; Colman, A.; Han, J. Recencyminer: Mining recency-based personalized behavior from contextual 

smartphone data. J. Big Data 2019, 6, 1–21. [CrossRef]  

[30.] Ahsan, M.; Gomes, R.; Chowdhury, M.; Nygard, K.E. Enhancing Machine Learning Prediction in Cybersecurity 

Using Dynamic Feature Selector. J. Cybersecur. Priv. 2021, 1, 199–218. [CrossRef]  

[31.] Li, J.; Qu, Y.; Chao, F.; Shum, H.P.; Ho, E.S.; Yang, L. Machine learning algorithms for network intrusion 

detection. In AI in Cybersecurity; Springer: Berlin/Heidelberg, Germany, 2019; pp. 151–179.  

[32.] Massaoudi, M.; Refaat, S.S.; Abu-Rub, H. Intrusion Detection Method Based on SMOTE Transformation for 

Smart Grid Cybersecurity. In Proceedings of the 2022 3rd International Conference on Smart Grid and Renewable 

Energy (SGRE), Doha, Qatar, 20–22 March 2022; IEEE: Piscataway, NJ, USA, 2022, pp. 1–6.  

[33.] Ahsan, M.; Gomes, R.; Denton, A. Smote implementation on phishing data to enhance cybersecurity. In 

Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, 

USA, 3–5 May 2018; IEEE: Piscataway, NJ, USA, 2018, pp. 0531–0536.  

[34.] Liao, H.J.; Lin, C.H.R.; Lin, Y.C.; Tung, K.Y. Intrusion detection system: A comprehensive review. J. Netw. 

Compute. Appl. 2013, 36, 16–24. [CrossRef]  

[35.] Tsai, C.W.; Lai, C.F.; Chao, H.C.; Vasilakos, A.V. Big data analytics: A survey. J. Big Data 2015, 2, 1–32.  

http://www.jetir.org/


© 2023 JETIR October 2023, Volume 10, Issue 10                                    www.jetir.org (ISSN-2349-5162) 

JETIR2310680 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org h650 
 

[36.] Sarker, I.H.; Abushark, Y.B.; Khan, A.I. Context Pca: Predicting context-aware smartphone apps usage based 

on machine learning techniques. Symmetry 2020, 12, 499. [CrossRef]  

[37.] Kaufman, S.; Rosset, S.; Perlich, C.; Stitelman, O. Leakage in data mining: Formulation, detection, and 

avoidance. ACM Trans. Knowl. Discover. Data TKDD 2012, 6, 1–21. [CrossRef]  

[38.] Nisbet, R.; Elder, J.; Miner, G.D. Handbook of Statistical Analysis and Data Mining Applications; Academic 

Press: Cambridge, MA, USA, 2009.  

[39.] Rosset, S.; Perlich, C.; Swirszcz, G.; Melville, P.; Liu, Y. Medical data mining: Insights from winning two 

competitions. ´ Data Min. Knowl. Discover. 2010, 20, 439–468. [CrossRef]  

[40.] Kohavi, R.; Brodley, C.E.; Frasca, B.; Mason, L.; Zheng, Z. KDD-Cup 2000 organizers’ report: Peeling the onion. 

ACM Sigkdd Explor. Newsl. 2000, 2, 86–93. [CrossRef]  

[41.] Gupta, I.; Mittal, S.; Tiwari, A.; Agarwal, P.; Singh, A.K. TIDF-DLPM: Term and Inverse Document Frequency 

based Data Leakage Prevention Model. arXiv 2022, arXiv:2203.05367.  

[42.] Stuart, M. Understanding robust and exploratory data analysis. J. R. Stat. Soc. Ser. D1984, 33, 320–321. 

[CrossRef]  

[43.] Kjamilji, A.; Sava¸s, E.; Levi, A. Efficient secure building blocks with application to privacy preserving machine 

learning algorithms. IEEE Access 2021, 9, 8324–8353. [CrossRef] [ 

[44.] Aono, Y.; Hayashi, T.; Wang, L.; Moriai, S. Privacy-preserving deep learning via additively homomorphic 

encryption. IEEE Trans. Inf. Forensics Secur. 2017, 13, 1333–1345.  

[45.] Takabi, H.; Hesamifard, E.; Ghasemi, M. Privacy preserving multi-party machine learning with homomorphic 

encryption. In Proceedings of the 29th Annual Conference on Neural Information Processing Systems (NIPS), 

Barcelona, Spain, 5–10 December 2016.  

[46.] Fang, H.; Qian, Q. Privacy preserving machine learning with homomorphic encryption and federated 

learning. Future Internet 2021, 13, 94. [CrossRef]  

[47.] Yang, Y.; Xiao, X.; Cai, X.; Zhang, W. A secure and high visual-quality framework for medical images by 

contrast-enhancement reversible data hiding and homomorphic encryption. IEEE Access 2019, 7, 96900–96911. 

[CrossRef]  

[48.] Salim, M.M.; Kim, I.; Doniyor, U.; Lee, C.; Park, J.H. Homomorphic Encryption Based Privacy-Preservation for 

IoMT. Appl. Sci. 2021, 11, 8757. [CrossRef]  

[49.] Bakshi, M.; Last, M. Cryptornn-privacy-preserving recurrent neural networks using homomorphic encryption. 

In International Symposium on Cyber Security Cryptography and Machine Learning; Springer: Berlin/Heidelberg, 

Germany, 2020; pp. 245–253.  

[50.] Guan, Z.; Bian, L.; Shang, T.; Liu, J. When machine learning meets security issues: A survey. In Proceedings of 

the 2018 impact of quantum computing on present cryptography. arXiv 2018, arXiv:1804.00200.  

[51.] Li, X.; Chen, D.; Li, C.; Wang, L. Secure data aggregation with fully homomorphic encryption in large-scale 

wireless sensor networks. Sensors 2015, 15, 15952–15973. [CrossRef] [PubMed]  

[52.] Latif, S.; Dola, F.F.; Afsar, M.; Esha, I.J.; Nandi, D. Investigation of Machine Learning Algorithms for Network 

Intrusion Detection. Int. J. Inf. Eng. Electron. Bus. 2022, 14, 1–22.  

[53.] Mavroeidis, V.; Vishi, K.; Zych, M.D.; Jøsang, A. Rosset , S.; Perlich, C.; Swirszcz, G.; Melville, P.; Liu, Y. Medical 

data mining: Insights from winning two competitions. ´ Data Min. Knowl. Discover. 2010, 20, 439–468. [CrossRef]  

[54.] Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 

35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; IEEE: 

Piscataway, NJ, USA, 1994, pp. 124–134.  

[55.] Bone, S.; Castro, M. A Brief History of Quantum Computing; Imperial College in London: London, UK, 1997. 

Available online: http://www.doc.ic.ac.uk/~{}nd/surprise_97/journal/vol4/spb3 (accessed on 10 May 2022).  

[56.] Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth 

Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219.  

[57.] Cerf, N.J.; Levy, M.; Van Assche, G. Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. 

A 2001, 63, 052311. [CrossRef]  

[58.] Ding, J.; Yang, B.Y. Multivariate public key cryptography. In Post-Quantum Cryptography; Springer: 

Berlin/Heidelberg, Germany, 2009; pp. 193–241.  

[59.] Hassija, V.; Chamola, V.; Goyal, A.; Kanhere, S.S.; Guizani, N. Forthcoming applications of quantum 

computing: Peeking into the future. IET Quantum Commun. 2020, 1, 35–41. [CrossRef]  

[60.] Schuld, M.; Sinayskiy, I.; Petruccione, F. The quest for a quantum neural network. Quantum Inf. Process. 

2014, 13, 2567–2586. [CrossRef]  

http://www.jetir.org/


© 2023 JETIR October 2023, Volume 10, Issue 10                                    www.jetir.org (ISSN-2349-5162) 

JETIR2310680 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org h651 
 

[61.] S. Huang, E.-H. Liu, Z.-W. Hui, S.-Q. Tang, and S.-J. Zhang, ‘‘Challenges of testing machine learning 

applications,’’ Int. J. Performability Eng., vol. 14, no. 6, pp. 1–8, 2018.  

[62.] J. Gao, J. Lanchantin, M. L. Soffa, and Y. Qi, ‘‘Black-box generation of adversarial text sequences to evade 

deep learning classifiers,’’ in Proc. IEEE Secur. Privacy Workshops (SPW), May 2018, pp. 50–56.  

[63.] J. Gao, B. Wang, Z. Lin, W. Xu, and Y. Qi, ‘‘DeepCloak: Masking deep neural network models for robustness 

against adversarial samples,’’ 2017, arXiv:1702.06763. [Online]. Available: http://arxiv.org/abs/1702.06763  

[64.] I. Goodfellow, P. McDaniel, and N. Papernot, ‘‘Making machine learning robust against adversarial inputs,’’ 

Commun. ACM, vol. 61, no. 7, pp. 56–66, Jun. 2018.  

[65.] T. Thomas, A. P. Vijayaraghavan, and S. Emmanuel, ‘‘Adversarial machine learning in cybersecurity,’’ in 

Machine Learning Approaches in Cyber Security Analytics. Singapore: Springer, 2020, pp. 185–200.  

[66.] P. Dasgupta and J. B. Collins, ‘‘A survey of game theoretic approaches for adversarial machine learning in 

cybersecurity tasks,’’ 2019, arXiv:1912.02258. [Online]. Available: http://arxiv.org/abs/1912.02258  

[67.] O. Ibitoye, R. Abou-Khamis, A. Matrawy, and M. O. Shafiq,‘‘The threat of adversarial attacks on machine 

learning in network security—A survey,’’ 2019, arXiv:1911.02621. [Online]. 

Available:http://arxiv.org/abs/1911.02621  

[68.] F. Zhang, P. P. K. Chan, B. Biggio, D. S. Yeung, and F. Roli, ‘‘Adversarial feature selection against evasion 

attacks,’’ IEEE Trans. Cybern., vol. 46, no. 3, pp. 766–777, Mar. 2016.  

[69.] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harnessing adversarial examples,’’ 2014, 

arXiv:1412.6572. [Online]. Available: http://arxiv.org/abs/1412.6572  

[70.] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, ‘‘Distillation asa defense to adversarial perturbations 

against deep neural networks,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2016, pp. 582–597  

[71.] W. Xu, D. Evans, and Y. Qi, ‘‘Feature squeezing: Detecting adversarial examples in deep neural networks,’’ 

2017, arXiv:1704.01155. [Online]. Available: http://arxiv.org/abs/1704.01155  

[72.] D. Meng and H. Chen, ‘‘MagNet: A two-pronged defense against adversarial examples,’’ in Proc. Conf. 

Comput. Commun. Secur. (ACM SIGSAC), Oct. 2017, pp. 135–147.  

[73.] R. Sommer and V. Paxson, ‘‘Outside the closed world: On using machine learning for network intrusion 

detection,’’ in Proc. IEEE Symp. Secur. Privacy, May 2010, pp. 305–316.  

[74.] A. A. Cárdenas, P. K. Manadhata, and S. P. Rajan, ‘‘Big data analytics for security,’’ IEEE Security Privacy, vol. 

11, no. 6, pp. 74–76, Nov./Dec. 2013. 

 

 

http://www.jetir.org/
http://arxiv.org/abs/1702.06763
http://arxiv.org/abs/1912.02258
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1704.01155

